Laying out key priorities for the EU’s upcoming Clean Industrial Deal, German Economy State Secretary Sven Giegold said on Monday (30 September) he wants the Commission to prioritise renewable energy, taking a tough line on nuclear power and France’s renewable targets.
Alongside a quicker roll-out of renewable energy facilitated by “further exemptions from [environmental impact] assessments,” Giegold outlined several other German priorities for the EU’s upcoming strategy.
Based on the 2030 renewable energy targets, the EU should also set up a 2040 framework, complemented by new, more ambitious targets for energy efficiency, he said.
“It should include new heating standards, a heat pump action plan and a renovation initiative,” he explained, noting a heat pump action plan was last shelved in 2023.
Hydrogen, made from renewables, should be governed by a “a pragmatic framework,” the German politician stressed, reiterating calls from his boss, Economy Minister Robert Habeck (Greens), to delay strict production rules into the late 2030s.
No, because specific power levels need to be available at specific moments. The flat production curve of nuclear does not pair well with varying production from solar/wind. Gas sucks for climate-change reasons but at least you can regulate it up/down in a matter of half hours to react to variability of your other production. While we still had nuclear, wind parks needed to shut down more often.
In the longer run, batteries will shift solar peaks over the day and H2 will likely be used to replace methane.
There are ways to modulate production even with “flat” production. A clever way is to use water as energy accumulator: you pump water into a dam during the night, that you later let flow through turbines during the day.
If artificial reservoirs were feasible, they would be better used to flatten the production from renewables.
In practice it is only feasible in areas that have existing natural geographic features.
Germany already have hydroelectricity accounting for 3% of their production, however 3% is nowhere near enough to neither flatten renewable or to modulate flat nuclear production to fit the daily volatile consumption.
Of course, they require the appropriate geographical features, but those features are relatively widely available in hilly landscapes, which are rather abundant in large parts of Germany.
The reasons why relatively few hydroelectric pump storage power plants have been built in Germany in the recent decades are entirely homemade. For once, the spirit of NIMBY is very strong in Germany, so if you’re planning to build something like that, you’ll be facing the wrath of a plethora of angry German Spießer forming citizens’ initiatives and fighting your project. On top of that, there is German bureaucracy, which will ensure, that the volume paperwork you’ll have to file for building your reservoir is sufficient for filling it up, should you happen to drop it in there. Then, there is the privatised power grid and its idiotic circumstances and rules, which make it unlikely for a pump storage power plant to be profitable, but thanks to the ideology of having privatised essential infrastructure, the state isn’t going to operate them.
Sure, if you’d wanted to put a lot of money into 30±year-old nuclear reactors, the power companies could have added storage. However, this is not the only issue of nuclear either and the societal consensus at one point was to phase the reactors out.
(Fwiw, the TerraPower reactors are supposed to store heat — except of course none have been built so far.)
It’s easier, faster and cheaper to build renewables plus a storage infrastructure to provide power during low production times than to build an infrastructure with nuclear that is able to respond quick enough to fluctuating demands.
Pumpspeicherkraftwerke. We have 31 of them in germany. Which is pretty much the maximum possible because you can’t build them just everywhere. And quick search says these things are economically unsustainable because of the extremely high construction costs but very low revenues. It is wasted money.
I wouldn’t go so far as to call it waste. It’s an inherent problem of any energy storage, and we need energy storage if we want to go all in on renewables. Storage has to pay for the energy it stores and can only sell that energy for profit if there is enough demand on the grid, so it sits idle for a lot of time, but you still have the building and maintenance costs.
My wording was poorly chosen. You are right of course. Its not a waste in that sense. But when better alternatives are available, which will hopefully soon achieve an acceptable level of efficiency, it makes no sense to build more. Apart from the space problem.
It’s only wasted money because we deliberately chose to have for profit businesses run infrastructure essential to the functioning of a modern society. In a nationalised power grid, it wouldn’t matter that a storage system has to use electricity in order to store it, because all that matters is meeting the demand and keeping the grid stable. Of course, if all that matters is profits, storage systems will only be economical to a very small subset of operators.
It’s only the maximum possible due to NIMBYs, misguided self proclaimed “environmentalists”, German bureaucrats and their petty shit preventing a dozen or so of new ones from being built in the past two decades. On top of that, idiotic “energy market” rules make them very unlikely to operate at profit, but thanks to the neoliberal ideology, essential infrastructure can’t be state operated.
Feel free to tone it down a little.
Your discussion of reservoirs/pumped hydro seems a bit one-sided too. Environmental concerns around e.g. sawing off hilltops to build a reservoir (happened in Czechia) or of destroying aquatic eco systems by sucking up/shreddering fish along with river water or drying up river beds are pretty real. Not to mention that reservoirs are already massively affected by climate change, as could be seen particularly well in China in recent years.
You know what’s also destroying ecosystems, but at a way larger scale? Climate change.
Landslides caused by reservoirs can be avoided by proper planning.
With your mindset, there won’t be any possibility of transforming power generation to something less environmentally damaging, because everything new you build has to do some sort of environmental damage. Wind turbines will shred some birds, water turbines will shred some fish, you’ll need land to build any of those, you might even have to cut down an odd tree, or two.
Wind turbines shredding birds is almost the definition of concern-trolling whereas the issues with hydro impacting aquatic life are at a much larger scale.
deleted by creator
NIMBYs are a political reality in a democracy. The power grid has to be built with them in mind. The alternative would be Chinese-style dictatorial measures, which aren’t something you want in a democracy.
NIMBYs aren’t very democratic either, it’s a small, but loud minority holding an entire society hostage.
You make it sound like the completely predictable power output of nuclear is a problem and unpredictable variation in output of the wind/solar is great.
That’s totally not what they said. Nuclear is very slow to change power output slower than demands fluctuate.
That is a challenge, because it means you need a flat consumption curve as well – which in reality you don’t see often. I.e. you either need to waste or cheaply export energy, especially at night and over the weekend to make sure your grid doesn’t crash.
The point is that augmenting solar/wind with (plain) nuclear doesn’t work well.
But the variability of solar/wind are a challenge as well, especially given the at times negative energy prices. Fossil, biomass, battery, pumped hydro, and H2-based power production have a huge advantage there.
Well there’s a base load of the grid that can be effectively served by the non-variable power plants - or is this outdated approach?
For every country that is moving to a solar/wind-dominated future, “base load” definitely is outdated. “Base load” was always artificially propped up economically through night-time power tariffs, and propped up practically through night shifts in factories (thus continually running processes) and things like night storage heaters.
You certainly don’t need base load to keep the grid stable, you just need to be able to quickly match production and consumption.
deleted by creator