• itsnicodegallo@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    6 months ago

    Serious question: How is this different than all the other sensationalized headlines about some technology that’s gonna change everything, and then you later hear nothing about it?

    • GreyEyedGhost@lemmy.ca
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      I had a little discussion with a guy complaining about sodium batteries and how you keep hearing these wild claims and then nothing. I did a quick search and saw an article about a $2 billion partnership agreement to work on a pilot plant for sodium batteries. He claimed it was yet another sensational headline and doubted anything would happen from it. Less than a week later I saw an article about a plant in America being announced.

      This stuff is hard. It’s not like Master of Orion where you throw money at a specific research and get access upon completion. Different groups around the world are researching a multitude of different ideas, some related, and after a while a bunch of these ideas are combined and associated and researched, and all of a sudden you have a new product that’s significantly different from what was available before. And then you see incremental improvements for decades, not unlike the internal combustion engine or rechargeable lithium batteries.

      • mysteryname101@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        Sodium batteries look great. They also can use the same manufacturing equipment as lithium batteries. Reducing the capital costs for the product.

      • pingveno@lemmy.ml
        link
        fedilink
        English
        arrow-up
        1
        ·
        6 months ago

        It’s the same with many infrastructure problems. You hear about some interesting infrastructure project that’s going to transform regional travel, improve transit, make biking/walking safer, or prepare for future natural disasters. Then it takes forever for them to go into place because it takes a long time to plan, do the legal work, and build. But then the infrastructure goes into place and no one thinks twice about the long process behind it.

        • afraid_of_zombies@lemmy.world
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          5 months ago

          Then it takes forever for them to go into place b

          I have an item that costs me 40 to buy. I sell you the item for 200. I get a hundred now and a hundred when you get the item. If I fill the order now I get my 100. However if I wait a year I get an interest free loan on the 40 bucks. Maybe I push you off for 10 years. I not only get the 100 you owe me I also doubled that 40. If I am a big company I can pull this off, if I am a one man operation I can’t. Guess who gets hired for these projects. Hint it isnt Jeff’s gutter repair.

          And that is just fixed priced contracts. You can imagine the horrorshow of open ended ones.

        • Tryptaminev@lemm.ee
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          And we should also consider the longevity of these infrastructures. Cities that built their subways in the 19th century are still running them today and are vastly superior in terms of transit abilities than car cities. The population densities of today are unimaginable without central sewers and water infrastructure. Having continent spanning electricity grids are gigantic achievements. All these have shaped our lives for decades and sometimes centuries already and they are set to do so for centuries to come.

    • realitista@lemm.ee
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      You are reading about it in Popular Mechanics, so it’s definitely a sensationalized headline, we know that at a minimum.

  • WaterWaiver@aussie.zone
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    6 months ago

    There have been constant news articles coming out over the past few years claiming the next big thing in supercapacitor and battery technologies. Very few actually turn out to work practically.

    The most exciting things to happen in the last few years (from an average citizen’s perspective) are the wider availability of sodium ion batteries (I believe some power tools ship with them now?), the continued testing of liquid flow batteries (endless trials starting with the claim that they might be more economic) and the reduction in costs of lithium-ion solid state batteries (probably due to the economics of electric car demand).

    FWIW the distinction between capacitors and batteries gets blurred in the supercapacitor realm. Many of the items sold or researched are blends of chemical (“battery”) and electrostatic (“capacitor”) energy storage. The headline of this particular pushes the misconception that these concepts can’t mix.

    My university login no longer works so I can’t get a copy of the paper itself :( But from the abstract it looks first stage, far from getting excited about:

    This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

    “holds promise” and “has the potential” are not miscible with “May Be the Beginning of the End for Batteries”.

    • 1111@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      |My university login no longer works so I can’t get a copy of the paper itself :(

      Scihub my brother 🙏

      • smpl@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        1
        ·
        6 months ago

        Sadly Sci-Hub has not received updated articles in several years. Alexandra is waiting for the outcome of the trial in India. I don’t think it depends on what the outcome is, just that the trial needs to be over.

        • Turun@feddit.de
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          We have the internet man, just bug another human and wait a few days to hear back from them.

          Like I know that’s what you are “supposed” to do. But public money public knowledge, I refuse to accept that this is somehow an acceptable state of things.

    • qupada@kbin.social
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      I’ve been seeing a lot about Sodium-ion just in the past week.

      While they seem to have a huge advantage in being able to charge and discharge at some fairly eye-watering rates, the miserable energy density would seem to limit them to stationary applications, at least for now.

      Perfect for backup power, load shifting, and other power-grid-tied applications though.

      • Liz@midwest.social
        link
        fedilink
        English
        arrow-up
        1
        ·
        6 months ago

        They’ve also got much better lifespans, being able to cycle many more times with less capacity loss. As they currently stand, they’re much better choices for stationary storage applications. However, I have seen them implemented in power tools and cars for their discharge rates, but it doesn’t hurt that they will stay healthy for longer.

      • lengau@midwest.social
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        I thought one of the main advantages of sodium-ion batteries was price? Great for the applications you listed

      • B0rax@feddit.de
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        There are already cars with this technology (one of the cheap Chinese ones)

      • Rinox@feddit.it
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        I mean, I wouldn’t mind a car with “only” 200km range, but that can charge up to full in just 5 minutes. I use my car just for work 99% of the time anyway, the times I need to go somewhere further away I can easily stop midway to charge, get a coffee in the meantime and then be on my way.

        • qupada@kbin.social
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          Unfortunately what’s shipping today seems it would offer maybe half that.

          For the batteries that were announced this past week, a larger-than-refrigerator-sized cabinet held a capacity of around 15kWh.

          Around half the energy density by mass of Lithium batteries, and in the order of a sixth of the density by volume.

          Now if only we could come up with a system where your car could be charged while stopped at traffic lights, we might be onto a winner (:

          Considering however that the price of sodium is around 1-2% that of lithium, I expect we will see significant R&D and those numbers quickly start to improve.

    • aleph@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      ·
      6 months ago

      Yup. How long have we been waiting for graphene batteries to revolutionize technology? About a decade now?

      • NauticalNoodle@lemmy.ml
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        …and the same obstacle that faced graphene a decade ago is the same seemingly insurmountable obstacle facing it today.

    • This is fine🔥🐶☕🔥@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      There have been constant news articles coming out over the past few years claiming the next big thing in supercapacitor and battery technologies.

      More like decades. Anyone remembers buckyballs and buckytubes? What happened to that?

      • davidgro@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        Nanotubes are still a thing, but most of the hype now seems to be around ‘buckysheets’ (graphene)

        • mriguy@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          There’s an old saying: “Graphene is so versatile it can do anything except leave the laboratory”.

          • GreyEyedGhost@lemmy.ca
            link
            fedilink
            arrow-up
            1
            ·
            6 months ago

            To paraphrase one of society’s less brilliant thinkers, “Who would have thought heathcare advanced materials science could be so hard?”

        • someacnt_@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          I heard that nanotubes are being used in strengthening various materials. But yeah, not world-changing

  • Safipok@lemmy.ml
    link
    fedilink
    arrow-up
    1
    ·
    6 months ago

    I wonder why I even read these articles. If these do turn out to be useful it will eventually make its way into technologies I use or buy near me. I don’t have to hunt them out.

    • nondescripthandle@lemmy.dbzer0.com
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      I mean the application isn’t exactly arduous but they use capacitors in solar powered watches instead of batteries. They claim you can still get 80% of max voltage after 20 years use.

    • Brokkr@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      That’s why we name our ages after the materials within. Material science is the foundation for almost all other physical sciences.

        • Gigasser@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          There’s the industrial age too. Which I guess you could also call “The Age of Steam” or “The Age of Coal” or some other thing.

        • Brokkr@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          We’re currently in the information age, which is due to silicon. In a few hundred years, this time may reasonably be called the silicon age. Society has only recently transferred to the silicon age from the previous iron age. If we don’t cause a total collapse of our society, then we will be in the silicon age for a few hundred more years, and that will likely include space colonization.

          The space age you’re referring to is likely the 60s, when space exploration was beginning. A decade or two isn’t long enough to be considered an age.

  • deaf_fish@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    6 months ago

    I wonder if we will get to a point where capacitor batteries will be too good.

    Can you image a small issue leading to an entire instantaneous energy dump of a large capacity capacitor while on an airplane?

    Make me wonder if we will limit how fast a capacitor can discharge in some consumer goods.

  • Ptsf@lemmy.world
    link
    fedilink
    arrow-up
    1
    ·
    6 months ago

    Although we don’t see it, all of these developments do actually eventually make their way into battery tech. The batteries of today are not the batteries of 2014.

    • xthexder@l.sw0.com
      link
      fedilink
      arrow-up
      1
      ·
      edit-2
      6 months ago

      If you remember what battery powertools were like in early 2010s, it’s super obvious how far we’ve come. The higher end things like battery powered lawn mowers didn’t exist, and if you wanted real power, you needed a cord.

      • afraid_of_zombies@lemmy.world
        link
        fedilink
        arrow-up
        2
        ·
        5 months ago

        I mentally nicknamed them the twins. Two guys who worked together with their two drills. Each had a double sized DeWalt battery and another spare double sized. Last time I saw them was 2016. So yeah you got an acedotal backing you up.

      • GenosseFlosse@lemmy.nz
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        I still remember that in the 90s till the 2000s you would get maybe 60 to 90 minutes of battery life out of a new laptop. Then it jumped to 4 or more hours thanks to better batteries, more energy efficient CPUs and displays.

        • jose1324@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          Laptops is a bad example. The improvements are moreso the chips and efficient hardware, not the battery

      • odelik@lemmy.today
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        I just wish it was an either/or situation.

        I don’t always need my lawn mower/blower/weed trimmer on batteries. I wish I could easily plug them in when doing light dut work close to the house. But then they couldn’t tie me into their battery ecosystem as easily.

        • qyron@sopuli.xyz
          link
          fedilink
          arrow-up
          1
          ·
          6 months ago

          I’ve seen a Makita eletric brush cutter with an adapter to plug straight into a standard outlet. The person who bought the machine told me it was more expensive than a battery pack but at least it made the machine usable for longer periods of time when energy is available.

  • zurohki@aussie.zone
    link
    fedilink
    English
    arrow-up
    1
    ·
    6 months ago

    Headline is dumb. If capacitors are better at being batteries than batteries are, they just become the next generation of batteries.

    • davel@lemmy.ml
      link
      fedilink
      English
      arrow-up
      1
      ·
      6 months ago

      Headline is not dumb. There are reasons to make a distinction between the two, the most salient one being that capacitors are several orders of magnitude faster to charge and discharge.

    • ji17br@lemmy.ml
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      But capacitors aren’t batteries. Batteries store chemical energy. Capacitors store electrical potential energy. Electronically they behave much differently.

      • Em Adespoton@lemmy.ca
        link
        fedilink
        arrow-up
        2
        ·
        6 months ago

        Yes they do… including not holding a charge when the differential drops too far.

        The real wins are in battery-backed capacitors. Charge the caps fast, then let them keep the batteries topped up.

        • SoylentBlake@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          6 months ago

          That’s what I do being off-grid. I have my battery bank then a series of Supercaps to essentially act as an on/off ramp//drawbridge and temper quick demands. Kinda like an inverse soft starter so this is suuuuper interesting to me.

      • WaterWaiver@aussie.zone
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        6 months ago

        Only for certain types of capacitors. In practice they can overlap quite a bit, especially with common aluminium electrolytic capacitors (these form & dissolve complex aluminium oxide & hydroxide layers on the plates).

    • j4k3@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      6 months ago

      Capacitors can theoretically charge MUCH faster.

      However the galvanic potential of lithium is as large as is practically possible. The galvanic potential is what really matters for a battery. Capacitors are nowhere near the joules per weight/volume.

  • onlinepersona@programming.dev
    link
    fedilink
    English
    arrow-up
    1
    ·
    6 months ago

    There are no absolute numbers in here. How much charge can it hold? How does that compare to an AAA battery? How long can it hold the charge and how does it compare? What dimensions would it need to have to store as much as a AAA battery? What’s the current projected price?

    Anti Commercial-AI license

  • SuperSpruce@lemmy.zip
    link
    fedilink
    arrow-up
    1
    ·
    6 months ago

    I can’t wait to see this technology in motorcycles and micro mobility vehicles. It will be a mushroom in Mario Kart IRL. And imagine this tech on drag bikes/cars

  • ChaoticNeutralCzech@feddit.de
    link
    fedilink
    arrow-up
    1
    ·
    edit-2
    6 months ago

    Electrolytic capacitors are closer to batteries than to non-polarized capacitors. Lithium-ion cells in capacitor housings also exist, presumably to evade tariffs and restrictions involved in shipping batteries.

    Super Li-ion battery NSC1015 high ratio Li-ion rechargeable battery 80mah 3C MAX current 10150 1015mm 1pcs

    • Hugin@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      Electrolytic capacitors use the chemistry to make a very high dielectric allowing the plates to get very close and increase the capacitance and decrease the size.

      A cell in a battery is a capacitor then converts the charge on the plates into chemical energy and vice versa allowing much more energy storage and a flat operating range as the plates charge is replenished by the chemical reaction.

      This article doesn’t go into details but it sounds like the breakthrough is a much better dialectic then storing energy in a chemical reaction.

    • Yerbouti@lemmy.ml
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      Upvoted because this is true. I knew that information so I can confirm it. I swear I did.

    • mysteryname101@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      6 months ago

      They’re more of a hybrid technology. They have some great applications.

      Like temporary storage when using regen from a car. They can buffer the energy and help with a rapid acceleration.

      Dash cam in a car. They can charge the cap and in the event in a malfunction / event. The camera can continue to record.

      Solar lamps. Charge during the day. Release energy during the night.

      They’re poor at long term storage. Great at fast and temp storage.

  • KillerTofu@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    6 months ago

    It’s not what the article says. Still interesting application of mixed 2D/3D technologies. Always hopeful that these energy developments leave the lab though.